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Abstract. The behaviour of a spheroidal vesicle, in a plane shear flow bounded from one
side by a wall, is analysed when the distance from the wall is much larger than the spheroid
radius. It is found that tank-treading motions produce a transverse drift away from the wall,
proportional to the spheroid eccentricity and the inverse square of the distance from the wall.
This drift is independent of inertia, and is completely determined by the characteristics of the
vesicle membrane. The relative strength of the contribution to drift from tank-treading motions
and from the presence of inertial corrections, is discussed.

1. Introduction

An important topic in the study of suspensions is that of understanding the ability of shear
to induce particle transport perpendicular to the velocity lines [1, 2]. One of the mechanisms
responsible for this kind of transport is the presence of lift forces due to inertia, pushing the
particles away from the walls [3] (for recent references, see [4]). It is well known that the
symmetry properties of the Stokes equation, which governs the dynamics of a purely viscous
fluid, do not allow for the presence of lift perpendicular to the flow lines, at least for the case
of spherical particles suspended in a plane shear flow [5]. However, mechanisms different
from inertia may allow for symmetry breaking, necessary for production of a transverse
drift.

A mechanism that is important, if one deals with a suspension of deformable objects,
is the ability of shear to induce, under appropriate circumstances, a fixed orientation of the
particles in suspension. If the deformable objects are vesicles filled with some other fluid,
as in the case of red blood cells, a fixed orientation can be attained when the vesicles are in
a state of tank-treading motion [6]. In this state, the membrane and the fluid inside circulate
in a steady fashion around the cell interior, while the cell shape and orientation remain
constant.

Taking a comoving cartesian system{x1, x2, x3}, with origin at the cell centre, and
oriented in such a way that the unperturbed velocity field has componentsv̄ = (0, 0, αx2),
there will be a velocity perturbationv such that, if the cell is exactly spherical and the inertia
is neglible,v1,2(x3) = −v1,2(−x3). Under these conditions, a plane wall perpendicular to
the x2 axis will produce a correctionvI to the perturbation field, such that by symmetry
vI

2 = 0 at the cell centre. An ellipsoidal cell with fixed orientation, instead, will lead to
symmetry breaking. Hence, there will be a driftvL = vI

2(0), which will depend on the cell
eccentricity, on the boundary conditions at the cell surface and, of course, on the distance

0305-4470/97/010317+13$19.50c© 1997 IOP Publishing Ltd 317



318 P Olla

from the wall l. Notice, however, that a non-spherical shape is not by itself a sufficient
condition for lift. A rigid non-spherical object, for instance, will not keep an orientation
fixed in time, carrying on instead a kind of flipping motion [7], whose contribution to lift
is going to be much reduced.

Inertia does not play any role in the mechanism for lift outlined above, and it will appear
that its effect can be disregarded when the particle is sufficiently close to the wall. Actually,
depending on the circumstances, the contribution to drift from tank-treading motions may
even turn out to be dominant. The drift of a spherical particle in a bounded shear flow
is purely due to inertia; in the case of a particle in a Couette gap with thicknessL,
vL(l) = f (l/L)RepαR, whereR is the particle radius,Rep = αR2/ν (with ν the kinematic
viscosity of the external fluid) is the particle Reynolds number, andf (l/L) is at most of
the order of a few tenths [8]. In the case of a tank-treading motion generated drift, one
has instead, in place ofRep, some parameter describing the non-sphericity of the particle
which, as in the case of red cells [9], is not necessarily small.

In this paper, the simplest possible case of a neutrally buoyant, almost spherical vesicle
in a purely Newtonian solvent, is taken into consideration. This allows a perturbative
analysis around the standard case of a spherical particle. The vesicle is taken at a distance
l from the wall such asR � l � √

ν/α; in this range, it is possible at the same time to
neglect inertia, and to treat the effect of the wall as a correction to the velocity perturbation
due to the vesicle. The technique is similar to the one adopted by Ho and Leal [10] in the
case of a spherical particle in a bounded shear flow.

The full problem of the determination of the spheroid shape under the combined effect
of the stresses in the solvent, the membrane and the fluid inside is not treated (for references
about this problem, see e.g. [11, 12]). Rather, an axisymmetric, ellipsoidal vesicle shape
is assumed. Thus, no information on the nature of the membrane and of the fluid inside
is utilized. However, two kinds of motions at the vesicle boundary are analysed: one of
which is area preserving, mimicking the behaviour of an inextensible membrane, like that
of blood cells, and one in which points at the surface move with uniform angular velocity,
simulating the case of an immaterial interface.

2. Stokes equation in vector spherical harmonics

In a perturbative analysis around a spherically symmetric situation, it is worthwhile
expanding the velocity field in terms of vector spherical harmonics:

v(x) = vs(x)+ ve(x)+ vm(x)

=
∑
lm

[vs
lm(x)xYlm(ex)+ ve

lm(x)∇Ylm(ex)+ vm
lm(x)[x × ∇]Ylm(ex)] (1)

whereYlm(ex) are standard, normalized spherical harmonics andex = x/x; the superscripts
{s, e and m} stand for scalar, electric and magnetic and come from the origin of this basis
as a tool in the study of electromagnetic waves [13].

This basis is clearly orthogonal and the componentsvsem
lm can be obtained in the standard

way. Alternatively, one can write

vs
lm = 〈lm|x · v〉

x2
(2)

ve
lm = − x2

l(l + 1)
〈lm|∇⊥ · (v − vs)〉 (3)
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and

vm
lm = 〈lm|∇ · [x × vm]〉

l(l + 1)
(4)

where the bra-ket notation〈lm|f 〉 ≡ flm(x) = ∫
d�x Y ∗

lm(ex)f (x), with d�x the solid
angle differential, is used, and∇⊥ is the angular part of the gradient.

At stationarity, an incompressible fluid in creeping flow conditions obeys the time-
independent linearized version of the vorticity equation

∇2[∇ × v] = 0 (5)

together with the continuity equation

∇ · v = 0. (6)

In terms ofvsem
lm components, the vorticity equation reads(

d2

dx2
+ 2

x

d

dx
− l(l + 1)

x2

)
f
(1,2)
lm = 0 (7)

where

f
(1)
lm = −vs

lm + 1

x
ve
lm and f

(2)
lm = −vm

lm (8)

while the continuity equation takes the form

x
dvs

lm

dx
+ 3vs

lm − l(l + 1)

x2
ve
lm = 0. (9)

From equations (7)–(9), one obtains the ‘outside’ and ‘inside’ solutions:
vs
lm = almx

−1−l + blmx
−3−l

ve
lm = 2 − l

l(l + 1)
almx

1−l − blm

l + 1
x−1−l

vm
lm = clmx

−1−l

(10)

and 
vs
lm = a′

lmx
l + b′

lmx
l−2

ve
lm = l + 3

l(l + 1)
a′
lmx

l+2 − b′
lm

l
xl

vm
lm = c′lmx

l.

(11)

The expression for the velocity perturbation by a spherical particle in a strain flow is thus
obtained. Remembering the correspondence between fully symmetric, tracelessl-tensors and
spherical harmonics with givenl, the contractionx−2αijxixj , whereαij = αji andαii = 0
(the convention of summation over repeated indices is adopted), can be expressed as a linear
combination of spherical harmonics withl = 2. One then finds from equation (10):

vi = ( 7
6ax

−5 + 5
3bx

−7)xiαjkxjxk − 2
3bx

−5αijxj (12)

which is, fora = − 10b
7 the velocity perturbation due to a sphere of unitary radius put in a

strain flow v̄i = 2b
3 αijxj [14].
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3. Velocity perturbation by an ellipsoidal vesicle

3.1. Boundary conditions at the wall

An ellipsoidal cell in a shear flow will feel the effect of the strain component of the flow,
which will tend to align strain and ellipsoid axes, while the vortical component will tend
to make the cell rotate. If the viscosity of the fluid inside or the rigidity of the membrane
are too large, the vesicle will tend to rotate as a rigid body, otherwise it will be in a state
of tank-treading motion.

In this configuration the symmetry axis of the ellipsoid will lie in the planex2x3, at an
angle θ̄ with respect to thex2, with θ̄ → ±π/4 for vanishing resistance of the vesicle to
deformation, and̄θ → ±π/2 at the threshold for the transition to flipping motion [6]. In the
two limits, the long side of the ellipsoid tends to be parallel, respectively, to the expanding
direction of the strain and to the unperturbed velocity field.

Figure 1. Cell orientation in a plane shear flow̄v = [0, 0, αx2].

Taking a reference system{x ′
1x

′
2x

′
3} at the cell centre, as shown in figure 1, withx ′

3
along the symmetry axis of the ellipsoid andx ′

1 ≡ x1, the equation for the cell surface can
be written in the form

(1 − ε)(x ′2
1 + x ′2

2 )+ (1 + ε)x ′2
3 = R2. (13)

For small values of the eccentricityε, the distance from the origin of a point on the surface,
with given elevationx ′

3 (and corresponding angular coordinates in the unprimed frameθ

andφ), can be written in the form

x(θ, φ) ' R

(
1 + ε

2

(
1 − 2

(
x ′

3

R

)2))
= R

(
1 + ε

2

(
1 − 2

(cosθ̄x3 − sinθ̄x2)
2

R2

))
. (14)

In a state of tank-treading motion, the membrane is assumed to move following two possible
laws. In the first case, for each value ofx1, points on the surface are taken to move at
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constant speed:

vB = 1
2BαR(x1) with R(x1)

2 = R2 − (1 − ε)x2
1 (15)

remaining on the elliptic trajectory, which corresponds to the given section at constantx1

of the cell surface. Such motion is locally area preserving, and approximates the behaviour
of an inextensible membrane, with negligible resistance to bending and shear. For smallε,
one expectsB ' 1+ βε; thus, forε = 0, the expression forvB reduces to that for a sphere
immersed in the given shear flow. In terms of components

vB = vB

0,
x ′

3√
x ′2

3 + (γ x ′
2)

2
,

x ′
2√

x ′2
2 + (x ′

3/γ )
2

 (16)

whereγ =
√

1−ε
1+ε . For smallε:

vB ' α

2

[
0,−x ′

3

(
1 + ε

(
β + x2

1

2x2
⊥

+ 2x ′
2

2

x2
⊥

))
, x ′

2

(
1 + ε

(
β + x2

1

2x2
⊥

− 2x ′
3

2

x2
⊥

))]
(17)

wherex2
⊥ = x ′

2
2 + x ′

3
2. Using equations (2) and (17), one finds

vs
B ' −εαx

x ′
2x

′
3

x2
(18)

and

ve
B ' εα

(
x

x2
− x⊥
x2

⊥

)
x ′

2x
′
3 (19)

It will appear that only thel = 2 part of vB must be taken into consideration in order to
calculate the lift. Using equation (3), a simple calculation leads to the result

vB = vm
B − 5

6
εαx

x ′
2x

′
3

x2
− εα

12
[0, x ′

3, x
′
2] + HH (20)

where HH indicates higher harmonics. In terms of unprimed variables and components

vB = vm
B − 5

12
εαx

(x2
3 − x2

2) sin 2θ̄ + 2x2x3 cos 2̄θ

x2

−εα
12

[0,−x2 sin 2θ̄ + x3 cos 2̄θ, x3 sin 2θ̄ + x2 cos 2̄θ ] + HH. (21)

The second membrane behaviour that is considered, is characterized by a constant angular
velocity motion:

vB = Bα

2
[0,−x ′

3/γ, γ x
′
2] ' α

2
(1 + βε)[0,−x ′

3, x
′
2] − αε

2
[0, x ′

3, x
′
2]. (22)

In terms of unprimed variables

vB ' α

2
(1 + βε)[0,−x3, x2] − αε

2
[0,−x2 sin 2θ̄ + x3 cos 2̄θ, x3 sin 2θ̄ + x2 cos 2̄θ ]. (23)

The behaviour described in equations (22) and (23) should mimic the motion of a droplet;
however, this is also the approximation for an area preserving membrane motion, used by
Keller and Skalak in [6]. Thus, comparing the velocity perturbation and the lift produced by
the two membrane motions, prescribed in equations (17) and (23), gives, among other things,
an idea on the acceptability of such an approximation, also in view of the simplifications
that become possible in the largeε regime.
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3.2. Calculation of the perturbation in an infinite fluid

If the membrane velocityvB(θ, φ) and the cell orientation̄θ , produced by the external
flow v̄(θ, φ, x), are known, the velocity perturbationv can be obtained from the boundary
condition at the vesicle surfacex = x(θ, φ):

vB(θ, φ) = v̄(θ, φ, x(θ, φ))+ v(θ, φ, x(θ, φ)). (24)

For small values ofε, it is possible to solve equation (24) perturbatively toO(ε):
v(0)B (θ, φ) = v̄(θ, φ, R)+ v(0)(θ, φ, R) (25a)

v(1)B (θ, φ) = v̄(θ, φ, x(θ, φ))+ v(0)(θ, φ, x(θ, φ))+ v(1)(θ, φ, R) (25b)

where, forx(θ, φ), the O(ε) correct expression, provided by equation (14) can be used.
In equation (25a) v(0)B is the velocity at the surface of the sphere, withx(0)(θ, φ) = R,
immersed in the same flow:

v(0)B (θ, φ) = α

2
[0,−x(0)3 ,x

(0)
2 ]. (26)

In this way, v(0) is the velocity perturbation by a sphere in a shear flow, given by
equation (12):

v(0) = 5

2

(
R4

x4
− R2

x2

)
αx2x3x

x2
− αR4

x4
[0, x3, x2]. (27)

Expanding equation (25b) in vector spherical harmonics and using equation (10) then allows
us to calculatev(1) for x > x(θ, φ).

For the first membrane motion, described by equation (21), one has

v(1)B = α

2

(
(β + x2

1

2x2
⊥
)ε + δx

R

)
[0,−x3, x2] + vC (28)

where

vC = − 5

12
εαx

(x2
3 − x2

2) sin 2θ̄ + 2x2x3 cos 2̄θ

R2

−εα
12

[0,−x2 sin 2θ̄ + x3 cos 2̄θ, x3 sin 2θ̄ + x2 cos 2̄θ ] + HH (29)

and

δx = Rε

2

(
1 − 2

(cosθ̄x3 − sinθ̄x2)
2

R2

)
. (29a)

(The identificationx(0) = x is allowed at the order inε considered.) It appears (details are
given in the appendix) that the condition on the absence of external torque on the vesicle
corresponds to thel = 1 components ofvm, being identically zero. This is achieved by
choosing appropriately the coefficientβ, and consequently the value of the tank treading
velocity. The present analysis is directed to calculating the lift at a large distance from
the wall. Hence, from equation (10), the leading contribution is from thevs

l=2 terms.
Substituting equations (14), (27) and (28) into equation (25b), keeping onlyO(ε) terms,
and neglectingvm and l > 2 components, one obtains forv(1)

v(1)x=R = vC + 5αδx

R

(
x2x3x

R2
− 1

2
[0, x3, x2]

)
. (30)

Using equations (29) and (29a) together with equations (2) and (3), one finds:

v(1)sx=R = −εαx

2R2
[(x2

3 − x2
2) sin 2θ̄ + 2x2x3 cos 2̄θ ] (31)
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and:

v(1)ex=R ' −εαR2∇ (x
2
3 − x2

2) sin 2θ̄ + (2 cos 2̄θ + 30)x2x3

x2

−5εα

R2
(cosθ̄x3 − sinθ̄x2)

2

(
x2x3x

R2
− 1

2
[0, x3, x2]

)
. (32)

All terms in equations (31) and (32) are clearlyl = 2 with the exception of the last line of
equation (32), which is a combination ofve andvm terms. After some tedious calculations,
expedited by the use of equation (3), the following expression for thel = 2 part ofv(1)ex=R is
obtained:

v(1)ex=R = εαR2∇
(

sin 2θ̄

x2

(
5x2

1

42
− x2

2

56
− 17x2

3

168

)
−

(
25

84
+ cos 2̄θ

12

)
x2x3

x2

)
. (33)

The leading term at large distance is, in the notation of equation (10), the contribution
a2mx

−3 to vs. From equations (31) and (33), using equation (10), one therefore obtains the
large distance result:

v(1) ' εαR3x

x3

(
sin 2θ̄

x2

(
5x2

1

14
+ 25x2

2

56
− 45x2

3

56

)
−

(
25

28
+ 5 cos 2̄θ

4

)
x2x3

x2

)
. (34)

The same identical calculations can be carried on for the second kind of membrane motion
described by equation (23), with the final result:

v(1) ' εαR3x

x3

(
sin 2θ̄

x2

(
5x2

1

14
+ 15x2

2

14
− 10x2

3

7

)
−

(
25

28
+ 5 cos 2̄θ2

)
x2x3

x2

)
. (35)

One question that comes naturally at this point is whether one could extend the analysis to
a non-perturbative regime, expanding directly equation (24) into vector spherical harmonics
and then, after imposing a cut-off onl and m, solving numerically the resulting linear
system in the unknownsalm, blm andclm. This could be useful in analysing the behaviour
of vesicles of a general, strongly non-spherical shape, but it is not the most efficient way
of proceeding, because the matrix associated with the system is strongly ill-conditioned.
Of course, in the case of an ellipsoid immersed in a shear flow, undergoing a linear tank-
treading motion like the one of equation (22), the theory of Keller and Skalak [6] can be
utilized to obtain analytic expressions for the velocity field. In the more general case, it
turns out that it is possible to modify the initial vector spherical harmonics basis, in such a
way that the velocity field is obtained directly, without having to invert any ill-conditioned
matrices [15].

4. Calculation of lift

The calculations in the previous section referred to an unbounded flow situation. A wall at
a large distance from the vesicle will cause a correctionvI to the velocity perturbationv
obtained in the previous section. This can be calculated using the boundary condition
provided by making the correction at the wall equal to minus the velocity given by
equations (34) or (35). The higher-order corrections are then obtained, using the value,
alternately on the vesicle surface and on the wall, of the previous calculated correction
as a boundary condition, in a series of images and counter-images, analogous to those of
electrostatics. If the distance from the wall is large, it is possible, however, to stop at the
first image.
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The technique at this point is standard [10, 16]; one introduces scalar and vector potential
φ andA, such as

vI = ∇φ + ∇ × A (36)

where

∇2φ = 0 and ∇ · A = 0. (37)

The first of equation (37) is a consequence of incompressibility, while the second is a gauge
condition. From here, the vorticity equation takes the form of a biquadratic:

∇2∇2A = 0. (38)

Taking the wall atx2 = l positive, parallel to thex1,3 axes, it is useful to Fourier transform
all quantities with respect tox1 andx3:

f (x) =
∫

dk1 dk3

(2π)2
ei(k1x1+k3x3)f̃ (k1, k3, x2).

The gauge condition onA takes then the form

Ã3 = −k1

k3
Ã1 + i

k3
Ã′

2 (39)

where the prime indicates derivative with respect tox2. The gauge is definitely fixed by
requiring thatA does not contain any potential contributiona such as∇2a = 0. With this
condition, the solution of equation (38) gives

Ã =Â(k1, k3)(x2 − l) exp(k(x2 − l)) (40)

wherek =
√
k2

1 + k2
3. The first of equations (37), instead, gives forφ:

φ̃ = φ̂(k1, k3) exp(k(x2 − l)). (41)

Using equations (36) and (39), the expression for the velocity correction becomes, in terms
of Fourier components

ṽI
1 = −k1

k3
Ã′

1 + i

k3
Ã′′

2 − ik3Ã2 + ik1φ̃

ṽI
2 = ik2

k3
Ã1 + k1

k3
Ã′

2 + φ̃′

ṽI
3 = ik1Ã2 − Ã′

1 + ik3φ̃

(42)

and imposing the boundary conditionṽI(k1, k3, l) = −ṽ(k1, k3, l), one finds
v̂1 = k1

k3
Â1 − 2ik

k3
Â2 − ik1φ̂

v̂2 = −k1

k3
Â2 − kφ̂

v̂3 = Â1 − ik3φ̂

(43)

wherev̂(k1, k3) = ṽ(k1, k3, l). Solution of this system gives:

φ̂ = i[−k1k3v̂1 + 2ik3kv̂2 − k2
1v̂3]

2k3k2

Â1 = k1k3v̂1 − 2ik3kv̂2 − (k2 + k2
3)v̂3

2k2

Â2 = i(k3v̂1 − k1v̂3)

2k
.

(44)
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At this point, one finds̃vI
2, by substitution of equation (44) into (42); forx2 = 0

ṽI
2(k1, k3, 0) = −[ik1lv̂1 + (1 + kl)v̂2 + ik3lv̂3] exp(−kl). (45)

The lift is found from inverse Fourier transform atx1 = x3 = 0:

vL(l) =
∫

d2k

(2π)2
vI

2(k1, k3, 0).

Of all the contributions tov entering equation (45), only those proportional to sin 2θ̄ in v(1)

give a non-zero result. Writing this in an explicit way:

vL(l) = − 1

(2π)2

∫ ∞

0
k dk

∫ ∞

0
x̂ dx̂

∫ 2π

0
dϕ

∫ 2π

0
dψ exp(−ikx̂ cosψ − kl)

×[klv1 cosϕ + (1 + kl)v2 + iklv3 sinϕ] (46)

wherex̂ =
√
x2

1 + x2
3, x1 = x̂ cosθ , k1 = k cosϕ andψ = θ − ϕ. In equation (46), one can

write, from equations (34) and (35):

v = εαR3 sin 2θ̄

x̂5
(2Cl2 + 2(D − C)x̂2 cos 2̄θ −Dx̂2)[x̂ cosθ, l, x̂ sinθ ] (47)

where all terms giving zero contribution in the integrals of equation (46) are disregarded.
The integrals in equation (46) can be carried out analytically, exploiting the following
properties of the Bessel functionsJν(x) [17]:∫ 2π

0
dψ exp(−iα cosψ) = 2πJ0(α) (48)∫ 2π

0
dψ cosψ exp(−iα cosψ) = 2π iJ1(α) (49)

and ∫ ∞

0
xµ dx Jν(βx) exp(−αx) = (−1)µ

dµ

dαµ
(
√
α2 + β2 − α)ν

βν
√
α2 + β2

. (50)

The final result is

vL = −εαC R
3 sin 2θ̄

l2
. (51)

Thus, the magnitude and the direction of the lift depend on the coefficient of thex2
2 terms

in the expression forv(1) given by equations (34) and (35). It is known [6], and a simple
argument for it is given in the appendix, that for sufficiently small values ofε, θ̄ = ±π

4 ,
with the plus sign when the ellipsoid is oblate(ε > 0), and the minus when this is prolate
(ε < 0). This leads then, both in the inextensible membrane case of equation (34), and
in the ‘droplet’ case of equation (35), to a drift away from the wall, which is directly
proportional to the inverse square of the distance from the wall, and to the eccentricityε:

vL = −C|ε|αR3

l2
. (52)

The values of the constantC are obtained from equations (34) and (35); one finds in the
two cases, respectively,C = 25

112 andC = 15
28.
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5. Conclusions

The main result that has been obtained in this paper is that tank-treading motions are able
to produce a transverse drift of vesicles in a sheared suspension. This effect is mainly
localized near the walls, where it can dominate that of the inertial corrections, on which
current theories on the lift of particles in suspension are based. It is possible to estimate
the thickness of the region where this happens. Using the expression for the inertial drift
of a spherical particle, in a bounded shear flow with 0< l < L: f (l/L) ∼ f 0(l/L− 0.5),
wheref 0 is a constant of the order of a few tenths [8], one finds from equation (51) that
the drift from tank treading motions remains dominant as long as

l

R
<

(
CεL

f 0RepR

)1
3

. (53)

Thus, thanks to the smallness in most situations of the particle Reynolds numberRep, the
width of the region where the drift from tank-treading motions is dominant can be so large,
that both approximations of largel/R and smallε, used in this paper, can be satisfied at
the same time.

However, the most interesting situation is that of strongly non-spherical vesicles, for
which ε = O(1). It is known that, for large values ofε, the vesicle tends to have its major
axis aligned with the unperturbed flow (which corresponds to sin 2θ̄ = 0), and then to make
the transition to a flipping motion [6]. Thus, there must be some criticalε̄ for which, with
the other parameters fixed, the drift velocity achieves its maximum value.

In the present theory, due to the smallness ofε, one has:θ̄ ' ±π/4, and the effect of
destruction of tank-treading motions, produced byε becoming too large, is not accounted
for. At the same time, the perturbative calculation leading to the large-distance behaviour
of the velocity disturbancev, becomes unreliable. However, extrapolating equation (53) to
large values ofε, the effect of tank-treading motions (when present) is expected to become
dominant in all situations of suspensions flowing in narrow gaps. Thus a non-perturbative
extension of the theory at largeε would be advisable.

Red cells are a physical system in which such a non-perturbative theory could be applied.
However, experimental observations [18, 19], as well as theoretical analysis [6], indicate that,
due to their membrane viscosity and that of the haemoglobin inside, these cells undergo
tank treading motions only when immersed in very viscous solvents, or in the presence of
very strong shear stresses. It is clear on the other hand, that inertia cannot by itself account
for phenomena like the concentration of red cells near the axis of small blood vessels: the
so-called Fahraeus–Lindqvist effect [20]. Using typical parameters for a red cell and a small
vessel [9],R ∼ 4µ, L ∼ 100µ, α ∼ 200 s−1 (i.e. v̄ ∼ 1 cm s−1), one finds that a transverse
drift of the order ofL, would occur only after the cell has travelled already for several cen-
timetres, much more than the length of a typical small vessel. Thus, a fixed orientation and
strong departure from sphericity remain the necessary ingredients for a sufficiently large lift,
and some different mechanism for maintaining a fixed orientation in the cell must be found.

The most important limitation of an analysis like the one in this paper is the fact that
the membrane motion and the cell shape are imposed from the outside. This, among other
things, makes it impossible to analyse the behaviour of the cell, when the distance from
the wall becomes comparable to the radiusR. At the same time, there remain open several
questions on which kind of membrane motions and cell shapes are possible, for instance
whether there could be membranes, whose response to an external shear field leads to a
drift towards the nearest wall, instead of away from it. The two behaviours considered in
this work lead to lifts of different magnitudes, but both directed away from the wall.
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The fact that different membrane behaviours lead to the cell moving in one direction
or another suggests the possibility of controlling the cell motion through the membrane
stiffness and the internal fluid viscosity. This could be of great importance in microsurgery,
where new methods to deliver drugs using microcapsules that break and drop their contents
when they are on the selected target, are taken into consideration. Already now, it seems
realistic to have cells whose stiffness varies with temperature and whose tendency to stay
away from the walls could be controlled from the outside. Carefully designing the cell
structure (and its response to external stresses or other stimuli), could allow in principle, a
fuller control on the cell trajectory, without having to rely on internal motors and sources
of energy.
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Appendix. Torque and energy balance

In a steady state of tank-trading motion, a vesicle in a shear flow will feel no external torque,
while the external work will be equal to the energy dissipated in the membrane and the cell
interior. In this paper, the membrane is supposed to oppose no resistance to bending and to
shear, and consequently, to be dissipation free. The simultaneous satisfaction of these two
conditions fixes the magnitude of the tank-treading velocityvB and the orientation anglēθ .

The external torque is calculated from the value of the stress tensorTij at a spherical
surface enclosing the vesicle:

Tij = µν(∂ivj + ∂jvi) (A1)

whereµ is the fluid density. The force and the torque on an infinitesimal element dSi of
the cell surface, oriented towards the outside, will be equal to, respectively,

d5i = Tij dSj and Mi = εijkxj d5k. (A2)

From here, the total torque acting of the spherical surface in exam, can be expressed, after
a few manipulations, in the form,

M = µνx

∫
d�x {[x × ∇](x · v)+ [x × (x · ∇)v] − [x × v]}. (A3)

The decomposition in vector spherical harmonics is used again:

v = vsxY + ve∇Y + vm[x × ∇]Y (A4)

where the notationvsemY ≡ ∑
lm v

sem
lm Ylm is used.

Substituting back into equation (A3), one obtains the result that only thevm components
contribute toM :

M = −µνx5(vm/x)′
∫

d�x ∇Y (A5)

and, remembering the correspondence between spherical harmonics and irreducible tensors,
it appears that only thel = 1 components survive. The no-torque condition takes then the
form, from equation (10),

cl=1 = 0. (A6)
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Turning to the requirement of energy conservation and steady state, the equation for the
balance between dissipation and external work can be written in the form

W =
∫

vB · d(Π′ − Π) = 0 (A7)

whereW is the membrane dissipation, taken equal to zero, and dΠ′ is the force with which
the fluid inside the cell acts on the infinitesimal element dS of the membrane. If the vesicle
is perfectly spherical, it will rotate as a whole, so thatW = 0, dΠ′ = 0 and equation (A7)
will coincide with the no-torque conditionM = 0. In fact, in this case only one parameter,
vB , remains to be calculated.

For small non-zeroε, W is a linear functional of the external velocity field and can be
decomposed into a contribution due to the strainS and another to the vorticityω of v̄:

W = WS(θ̄, ε, S)+Wω(θ̄, ε, ω). (A8)

If ω = 0 the cell will tend to align with the strain axes ofv̄, i.e.: θ̄ = ±π
4 ; therefore

WS
(
±π

4
, ε, S

)
= WS(θ̄, 0, S) = 0 (A9)

and the first non-zero derivative ofWS is ∂θ̄ ∂εW
S(±π

4 , 0, S). Turning to the vortical
component, writing

M =
∫

dS AM and Wω =
∫

dS AW (A10)

one observes that

AW = (c + O(ε))AM + O(ε2). (A11)

Thus, if the no-torque conditionM = 0 is satisfied, one has:

Wω(θ̄, ε, ω) = ε2

2
∂2
εW

ω(θ̄ , 0, ω)+ O(ε3)

and one finds from equation (A7)

θ̄ = ±π
4

− ε

2

∂2
εW

ω

∂θ̄ ∂εW
S

+ O(ε2). (A12)

Hence, almost spherical vesicles tend to carry on a tank-treading motion, with the symmetry
axis aligned with one of the strain axes of the external flow.
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[1] Segŕe G and Silberberg A 1962J. Fluid Mech.14 115
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